Remote sensing of burned areas via PCA, Part 2: SVD-based PCA using MODIS and Landsat data
نویسندگان
چکیده
Background: Singular value decomposition (SVD), as an alternative solution to principal components analysis (PCA), may enhance the spectral profile of burned areas in satellite image composites. Methods: In this regard, we combine the pre-processing options of centering, non-centering, scaling, and non-scaling the input multi-spectral data, prior to the matrix decomposition, and treat their combinations as four different SVD-based PCA versions. Using both unitemporal and bi-temporal data sets, we test all four combinations to derive principal components. We assess the effects of the transformations based on multiresponse permutation procedures and quantify the enhanced spectral separability between burned areas and other major land cover classes via the Jeffries-Matusita metric. Lastly, we evaluate visually and numerically all principal components and select a subset of interest. Results: The best transformation for the subset of selected components, is the uncentered-unscaled one. Conclusions: The results indicate that an uncentered and unscaled SVD may improve the spectral separability of burned areas in some of the higher order components.
منابع مشابه
Remote sensing of burned areas via PCA, Part 1; centering, scaling and EVD vs SVD
Background: Principal components analysis (PCA) is based conventially on the eigenvector decomposition (EVD). Mean-centering the input data prior to the eigenanalysis is treated as an integral part of the algorithm. It ensures that the first principal component is proportional to the maximum variance of the input data. Equivalent to EVD, but numerically more robust, is the singular value decomp...
متن کاملExploring Gördes Zeolite Sites by Feature Oriented Principle Component Analysis of LANDSAT Images
Recent studies showed that remote sensing (RS) is an effective, efficient and reliable technique used in almost all the areas of earth sciences. Remote sensing as being a technique started with aerial photographs and then developed employing the multi-spectral satellite images. Nowadays, it benefits from hyper-spectral, RADAR and LIDAR data as well. This potential has widen its applicability in...
متن کاملMapping and Monitoring Land Cover in Acre State, Brazilian Amazônia, using Multitemporal Remote Sensing Data
This paper presents the use of multitemporal remote sensing data for monitoring land cover changes in Acre State, Brazilian Amazônia. The 2000 Landsat ETM+, the 1990 Landsat TM, and 1980 Landsat MSS were used. The 2005 and 2007 MODIS images were also used to map deforestation occurred during the recent years and to map burned areas occurred in the 2005 dry year. The Landsat and MODIS images wer...
متن کاملAn Algorithm for Burned Area Detection in the Brazilian Cerrado Using 4 µm MODIS Imagery
The Brazilian Cerrado is significantly affected by anthropic fires every year, which makes the region an important source of pyrogenic emissions. This study aims at generating improved 1 km monthly burned area maps for Cerrado based on remote-sensed information. The algorithm relies on a burn-sensitive vegetation index based on MODIS daily values of near and middle infrared reflectance and make...
متن کاملAnalysis and Assessment of the Spatial and Temporal Distribution of Burned Areas in the Amazon Forest
The objective of this study was to analyze the spatial and temporal distribution of burned areas in Rondônia State, Brazil during the years 2000 to 2011 and evaluate the burned area maps. A Linear Spectral Mixture Model (LSMM) was applied to MODIS surface reflectance images to originate the burned areas maps, which were validated with TM/Landsat 5 and ETM+/Landsat 7 images and field data acquir...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017